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The kinetics are investigated for diffusion-controlled reactions in a fractal medium de-
scribed by a Smoluchowski equation. A class of model potentials are taken into account so as
to solve the time-dependent Smoluchowski equation. Corrections to the standard solution are
proposed for the fractal geometry of the medium.
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1. Introduction

The Smoluchowski equation can be used to describe the kinetics of diffusion-
controlled reactions. Steady-state solutions of this equation is always found at least
in quadratic form. In contrast, time-varying solutions cannot be obtained for arbitrary
interaction potentials. Some of studies [1] have been carried out for handling model po-
tentials which, on the one hand, would make it possible to find analytic solutions of the
time dependent Smoluchowski equation and which, on the other hand, might be consid-
ered as reasonable approximations of real interaction potentials. The work on seeking
such potentials is getting more complex if the reaction takes place in an inhomogeneous
medium. Fractal models of amorphous and disordered media [2,3] have intensively been
investigated.

Fractals differ from Euclidian structures in that they have a fractional spatial dimen-
sion, do not conform to a translation group (even locally), and are instead characterised
by self-similarity (i.e., a local invariance under scale transformations). For this reason,
transport and reaction processes on fractals are anomalous. For example, for a particle
undergoing a random work along a fractal the mean-square displacement of a random
walker is described as a form [3–5]:

〈∣∣r(t)∣∣2〉 ∝ t2/dw, dw = 2+ θ > 2,

where t is time, dw is the dimension of the trajectory of the random work, and θ > 0 is
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an anomalous diffusion exponent. The diffusion coefficient on a fractal thus can not be
regarded as constant and is instead characterised by a scaling behaviour [3–5]

K(r) ∼ K0r
−θ . (1)

Brownian diffusion on a fractal is described by the equation

∂ψ(r, t)

∂t
= r1−D ∂

∂r

[
K(r)rD−1 ∂ψ

∂r

]
, (2)

where ψ(r, t ) is a distribution function (the average probability density for finding the
particle at time t and point r under the condition that at time t = 0 the particle was at
the point r = 0). For simplicity, the equation has been written in spherical coordinates;
D is the dimension of the fractal.

A solution of equation (2) is well known [3,4]:

ψ(r, t) = dw

D�(D/dw)

(
K0d

2
wt
)−D/dw exp

{
− rdw

K0d2
wt

}
. (3)

Here the mean-square displacement has a form:

〈∣∣r(t)∣∣2〉 = (K0d
2
wt)

2/dw�((D + 2)/dw)

�(D/dw)
. (4)

Equations (3) and (4) agree well with the results of a numerical simulation of diffusion
on fractals and also with the results of renormalization-group calculations for regular
fractals (Sierpinski gaskets) [3–5].

The diffusion of interacting particles on diffusion processes in a potential has not
been sufficiently investigated, although these processes are of significance from a reac-
tion kinetics point of view in fractal media. The reason for this is that the interaction
between diffusing particles in a real system is fairly complex since it contains not only a
short-range part associated with excluded volume effects but also a long-range compo-
nent due to, for example, a Coulomb interaction. Incorporation of the long-range forces
into diffusion characteristics is a rather complex problem even in the Euclidean case.

The aim of this paper is to investigate the effect of long-range potential forces on
diffusion-kinetic processes described as a Smoluchowski equation in a fractal media. By
analogy with the approach in [1], we focus on the construction of a class of model po-
tential which enable us to find analytic solutions (in quadrature form) of time-dependent
Smoluchowski equation.
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2. Theoretical method on diffusion-controlled kinetics

Using equation (1), we write a Smoluchowski equation for a particle with a Brown-
ian motion on a fractal in the field of another particle, which is at the origin of coordinates
(for simplicity, we consider the case of spherical symmetry and a potential interaction):

∂ψ

∂t
= r1−D ∂

∂r

[
K(r)rD−1

(
∂ψ

∂r
+ β

∂V

∂r
ψ

)]
. (5)

Here ψ(r, t ) is a distribution function, β−1 = kT , and V (r) is the interaction potential.
So as to solve equation (5), we use the simple boundary conditions:

ψ(ρ, t) = 0 and ψ(∞, t) = 1, (6)

where ρ is the radius of the reaction surface. When we assume τ = K0t , U = βV ,
x = (1/v)rγ , γ = (θ/2)+ 1 and assume the new function ϕ(x, τ ) in accordance with

ϕ = ψ exp v, v(x) = α ln x + u(x), u(x) = U(x)

2
, α = D − γ

2γ
,

equation (5) and boundary conditions (6) is transformed into the following forms:

∂ϕ

∂τ
= ϕ′′ + F(x)ϕ, (7)

ϕ(R, t) = 0, lim
x→∞ x−αϕ(x, t) = 1. (8)

Here the primes mean partial derivatives with respect to x,R = (1/γ )ργ , and F(x) is
given by

F(x) = u′′(x)− [u′(x)]2 + 2αx−1u′(x)+ α(1− α)x−2.

Taking u(x) = α ln x−lnw,U = −2 ln x−αw(x), we obtain the function w(x) to satisfy
the equation:

w′′ + F(x)w = 0. (9)

As mentioned in [1], this equation can be used to represent model potentials for a given
function F(x). It is possible to use either Laplace transforms or the method of separa-
tion of variables to solve time-dependent equation (7), if it is related to an eigenvalue
problem. As a result the question for model potentials is determined by whether it is
possible to get an analytic solution of the equation

y′′λ(x)+
[
F(x)+ λ

]
y′′λ(x) = 0.

For λ = 0, the solution y0(x) = w(x) has to satisfy the boundary condition

lim
x→∞ x−αy0(x) = 1. (10)

It is not difficult to see that in contrast with the Euclidean case with α = 1 equa-
tion (10) is nontrivial in the sense that it is not satisfied by a solution of the equation
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with F(x) = 0. The simplest solution of equation (9) which satisfies boundary condi-
tion (10) is the null solution w(x) = xα , which corresponds to U(x) = 0. In this case
the function F(x) is given by

F(x) = −α(α − 1)x−2,
1

2
< α < 1. (11)

It is not difficult to find all solutions of equation (9) which correspond to the choice of
F in form (11):

w(x) = xα + a0x
1−α,

where a0 is a parameter. The corresponding model potentials are

U(x) = −2 ln
(
1+ a0x

1−2α). (12)

In the Euclidean case (α = 1), potential (12) becomes very simple model potential given
in [1].

From equation (12) we find that at large r we have

V (r) ∼ −a0r
dw−D, D − dw < 1.

Potential (12) falls off at infinity more slowly than a Coulomb potential so that long-
range effects should be more prominent in this model than in Euclidean case.

We turn now to a solution of equations (7) and (8). As the initial condition we use
a Boltzmann distribution

ψ(r, 0) = exp
(−βV (r)

)
, ϕ(x, 0) = xα exp

(−U(x)

2

)
.

It is a simple matter to find a steady-state solution of equation (7):

ϕ∞(x) = xα
{

1−
(
x

R

)1−2α}
.

We set

z(x, τ) = ϕ(x, τ )− ϕ∞(x).

It is not difficult to verify that z satisfies the same equation as is satisfied by ϕ and
also the following boundary and initial condition:

z(R, τ) = 0, lim
x→∞ x−αz(x, t) = 0,

z(x, 0) = (l0 + a0)x
1−α, l0 = R2α−1. (13)

We are interested below in the reaction rate k(t), which is determined by the following
expression [1]:

k(t) = SD(ρ)K(ρ)
∂ψ

∂r

∣∣∣∣
r=ρ

,
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where SD(ρ) = SD(1)ρD−1 is the area of the surface of a D dimensional sphere of radius
R and SD(1) = 2πD/2/�(D/2).

In the steady, the reaction rate is

k∞ = SD(R)K0(2α − 1)γ 2αR2α−1/γ (1+ l0R
1−2α).

Taking Laplace–Carson transforms of equation (7) with respect to z, and of condi-
tions (13), we find

p
(
z̃(x, p)− z(x, 0)

) = z̃′′(x, p)+ F(x)z̃(x, p), (14)

z̃(R, p) = 0, lim
x→∞ xαz̃(x, p) = 0, (15)

where z̃(x, p) is the transform of the function z(x, p).
Setting z1(x, p) = z̃(x, p) − z(x, 0), we can rewrite equation (14) and boundary

conditions (15) as

z′′1(x, p)+
[−p + α(1− α)x−2]z1(x, p) = 0, (16)

z1(R, p) = −(l0 + a0)R
1−α, lim

x→∞ x−αz1(x, p) = 0. (17)

Equation (16) is related to the Bessel function. Its solution can be written in the form

z1(x, p) = C1x
1/2Im

(
p1/2x

)+ C2x
1/2Km

(
p1/2x

)
, m = α − 1

2
> 0.

Using the second of boundary conditions (17), we find C1 = 0 and thus

z1(x, p) = (l0 + a0)x
1−α
{

1−
(
x

R

)m
Km(p

1/2x)

Km(p1/2R)

}
. (18)

Assuming the notation ,k(p) = k1(p)− k∞, we find

,k(p) ∝ ∂z1(x, p)

∂x

∣∣∣∣
x=R
∝ (l0 + a0)R

1−α
{
p1/2Km−1(p

1/2R)

Km(p1/2R)

}
. (19)

3. Summary

To find z(x, t) and k(t), we would have to take the inverse transforms of (18) and
(19). Unfortunately, this cannot be done exactly. We can, on the other hand, discuss
several important asymptotic cases.

A. The large-t limit: R2/t, x2/t 
 1.

We use the asymptotic expression for the function Kv(z) as z→ 0 [6]:

Kv(z) ≈ 1

2
�(v)

(
z

2

)−v{
1+ z2

4(1− v)

}
.
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From (18) we then find

z1(x, p) ∝ (l0 + a0)x
1−α
{

1− x2

R2

}{
1− 1

1+ R2p/4(1−m)

}
.

We thus have

z(x, p)∝ (l0 + a0)x
1−α
{

1− x2

R2

}
exp

{
−4(1−m)

R2
t

}
,

,k(t)∝ 1− exp

{
−4(1−m)

R2
t

}
.

B. The small-t limit: R2/t, x2/t � 1.

In this case, using the asymptotic expression km(z) ≈ (π/(2z))1/2 exp(−z) for
|z| � 1, we can write

z1(x, p) ∝ (l0 + a0)x
1−α
{

1−
(
x

R

)α−1

exp
[−p1/2(x − R)

]}
.

In the small-t limit we thus have

z(x, p)∝ (l0 + a0)x
1−α
{

1−
(
x

R

)α−1}[
1−-

(
x − R

2t1/2

)]
,

,k(t)∝ ∂z

∂x

∣∣∣∣
x=R
∝ (l0 + a0)R

1−α 1

(πt)1/2
,

where -(x) is the probability integral.
In the Euclidean case (α = 1) we have

zc(x, t ) ∝ (a0 + l0)-

(
x − R

2t1/2

)
.

The asymptotic behaviour at large distance is

x/R � 1
(
R2/t 
 1, x2/t � 1

)
.

Using the asymptotic expressions above, we find

z1(x, p) ∝ (l0 + a0)x
1−α
{

1− 1

�(m)

(
2π

x

)1/2(
x

2

)m

p(α−1)/2 exp
(−p1/2x

)}
.

Taking inverse transforms, we find

z(x, t) ∝ (l0 + a0)x
1−α
{

1−
(
x

2

)−α
2(2−α)/2t (1−α)/2 exp(−x2/8t)

�(α − 1/2)
Dα−2

(
x

2t1/2

)}
,

where Dα(z) is the Whittaker function.
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Using an asymptotic expansion for Dα(z) at z� α [6],

Dα(z) ≈ zα exp

(
−z

2

4

)
,

we find

z(x, t) ∝ (l0 + a0)x
1−α
{

1− t (3−2α)/2

x2

4

�(α − 1/2)
exp(−x2/4t)

}
.
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